Nabrawind Transition Foundation

Some days ago I have been contacted by Miguel, Sales And Marketing Manager at Nabrawind.

Nabrawind is a Spanish company working at several interesting breakthrough concepts – including a modular blade that I will try to describe in another article in the future, a self erecting tower and the innovative “Transition Foundation”.

Miguel asked me if I was interested in receiving material about the Transition Foundation solution they have developed.
I was obviously very happy to accept his offer and share with you what I have learned.

This alternative foundation use a 20 meters tall transition element in steel and cast iron in the lower section, at the bottom of the tower.

A detail of the transition element

The transition element is connected to the ground through three “feet” that allow different technical alternatives for the foundation: the standard solution (“shallow” or “gravitational”) plus two cheaper options – piled foundations (for standard soils) and rock anchors (when bedrock is very near to the surface).

The three alternatives solutions for the Nabrawind foundation - shallow, piled and with rock anchors

For a 4MW wind turbine the piles are expected to have a diameter of 1.5 meters with a depth in the 15 to 20 meters range.

A 15 meters pile would need approximately 80 m3 of concrete and 21 Ton of steel in total (that is, for the three piles).

This figure indicate very substantial potential savings in the amount of concrete and important reductions in the quantity of steel as well.

The piles are connected to the transition element via anchor cages (obviously smaller than the normal anchor cage used with standard solution).

In addition to the savings in the quantities the other main benefit of the solution is the speed. You will need only one or two days to drill the hole for the pile, and the installation of the reinforcement bars and concrete pouring is very quick as well (both operation should last between 2 and 4 hours in total).

The anchor cage variant promise to be even faster, needing only three concrete blocks (one for each “foot”) to level the surface and distribute the loads and 6 post-tensioned rock anchors with a length in the 15 meters range.

The Transition Foundation is more than a concept – the first foundations using this solution have been built in a wind farm in Morocco for a 3.6MW wind turbine on a 144m tower.

The have 24 meters long piles with a 1.2 meters diameter, for a total of only 81 m3 of concrete and 25 Ton of steel – a remarkable result.

How the foundation looks like (notice the 3 elements)

In the last picture you can see a detail of the completed works for the foundation.

How the completed foundation look like

Lift me up: the braced foundation

The braced foundation is a partially precast foundation that lift the wind turbine some additional meters above the ground.

Developed and patented by Esteyco (a Spanish engineering firm) is a technical solution validated, certified and used in several wind farms worldwide.

This solution increase the hub height up to 5 meters, which usually results in a significant increase of the annual energy production.

The “braces” are elements of precast concrete – basically double beams with a rectangular section transmitting the loads from the tower and stiffening the foundation.

They are on top of a cast in situ circular concrete slab that transmit the loads to the ground. This slab has a circular edge beam below, whose function is to absorb bending moments and contribute to the overall stiffness.

In the middle there is a central ring, while the tower rest on a smaller upper slab.

The main benefit of this solution is the increase of energy production – 5 meters of additional hub height can bring an annual increase in the 1% to 2% range depending on local wind condition.

Although this could look like a small number, compounded over 25 to 30 years it can really make a difference for the economics of the investment.

You first question could be something like “why not to use an higher tower”?

Generally, towers are designed, manufactured and sold with specific heights. Each wind turbine manufacturer has a portfolio that include only some heights (e.g. 90m, 100m, 110m, etc.).

Therefore you could find yourself in a position where the project could theoretically use a different hub height not offered by the wind turbine manufacturer.

Although every now and then project specific tower are designed and built this is not the standard and it has several implication in terms of time, cost, etc. Therefore it could be better to go for an off the shelf solution that gives you those additional few meters that your project need.

According to Esteyco this solution is also quicker to execute, at least in big wind farms. I do not have real world feedback to comment on this, although my impression is that the number of precast or partially precast foundation solutions used in the market is increasing.

This solution as a certain versatility because it can be used with different soil condition, including difficult geotechnical situation that needs piles.

It also use less material due to its geometry. I do not have actual figures to comment on the final cost, however my impression is that the real benefit will come from the additional production and that the saving in materials will be offset by the increased manufacturing complexity.

This solution has already a certain track record. I see that it has been used in Italy, Mexico, India, China and Saudi Arabia (in Dumat Al Jandal, a wind farm that I tendered 8 or 9 years ago – this gives you an idea of how long it may takes for a project to materialise).

It has also been certified by DNV-GL and TUV, undoubtedly a strong plus.

All the pictures are stolen from the presentation that Esteyco has given at India Windergy 2017.

Once More, with Feeling: Timber Towers

Modvion laminated wood tower. Image copyright Modvion

Approximately one year ago I wrote a post about a full scale prototype of a wind turbine tower made of wood.

It has been built in 2012, but after that the idea seemed to have stalled without progress: one of the companies involved in the construction, TimberTower GmbH, disappeared from the radar shutting down their website and I suspect they went out of business.

However, I see that someone else has taken up the challenge: Modvion, a Swedish start-up.

They could be more successful in moving from the prototyping phase to the industrialization for at least two reasons: they are coming from Sweden, a country with an extensive know how and network of companies active in wood construction, and they successfully went through a round of Venture Capitalists, Business Angels and European Union founding.

They target is to be ready to market in 2022 cross laminated timber towers in the 100 – 150 meters range. This means that they want to enter in the 4 to 5 MW segment, the current standard for utility scale WTGs. The prototype that they have just installed is 30 meters high.

Such tower could have several benefits – solve the current transportation problems (steel towers with diameters over 4 meters have huge transportation challenges due to bridges, cables, etc.), lowering the carbon footprint and possibly even be cost competitive against the current technologies (steel, concrete and hybrid).

I have no idea of the behavior of this solution from the resonance point of view although I suspect that the increased diameter at the base improve the situation. I also ignore how this tower would behave in case of fire: I have personally seen a fire very near to the wind turbines some years ago in Portugal.

Unfortunately their website does not share many technical details. I understand that it is a modular solution, with the total number of modules obviously depending on the tower height being a standard solution in the 30 - 40 modules range.

The tower section is circular, unlike the TimberTower solution that was octagonal.

Among the materials used for the tower I see glued laminated timber and laminated veneer lumber - basically a mix of wood and adhesives, with superior technical properties and more uniform characteristics as it is produced in a controlled environment.

The modules are joined together using double-treaded fasteners, preassembling on site 4 or more tower sections with a bottom diameter of 6+ meters (that is, more than a standard steel tower).

This concept is similar to some concrete modular tower solution with a key difference – the modules are assembled horizontally, so I guess that the need of big crane support is limited.

I also understand that the internals of the towers would be similar to the ones currently built (with elevator, ladder, space for transformer, etc.).

Printable 3D concrete wind turbine towers

Yes, you're reading right – you can print your concrete tower.

I have discussed in many previous articles how I see some evidence that we are reaching the maximum size for steel towers, mainly because of transportation issues.

For higher towers concrete towers could help solving the problem, as they can be transported in pieces and assembled on site.

Among the different technologies available for concrete I have just discovered this exiting evolution: a Danish company specialized in 3D concrete printing, COBOD, partnered with GE Renewable and LafargeHolcim to develop a large printable tower.

COBOD already printed some years ago a full scale building, a small but beautiful 50 m2 office with curved walls.

For this interesting evolution they already made a prototype about 10 meters tall.

The concrete is extruded by the machine in a sort of ribbon, and the internal and external sides of the tower are reinforced by a “wavy” central section.

Currently the solution that they are targeting is a hybrid tower (that is, with the top section made of steel) with an on-site printed base.

Dancing in the wind

I have discussed in other post the phenomenal growth of the dimensions of wind turbines in the last 2 decades. Bigger rotors, taller towers and more MW has been the industry trend year after year.

There is some evidence that we are reaching the limit – blades of more than 50m length pose significant logistic challenges, while steel tower more than 100 meters tall can be subject to strong vibrations and dangerous oscillations under certain circumstances.

Such vibrations can be induced by several external sources such as an unbalanced rotor, an earthquake or the wind itself.

They are dangerous because they can damage the turbine due to fatigue loading (the weakening of materials due to cyclical loads). Some type of foundation can also partially lose stiffness – for instance monopile foundations.

Additionally, these vibrations can also trigger resonance phenomenons in the tower – you can follow this link to see of how “soft soft” and “stiff” tower are designed based on the blade passing frequency.

You can see a good full scale example of this problem in the video above and read here more about wind turbine vibrations.

There are several technical solutions currently being studied to dampen the tower reducing the vibrations.

Among the most interesting concept that I have seen I would mention tuned mass dampers – basically an auxiliary mass connected to the structure with spring and dashpots (viscous friction dampers), friction plates or similar energy dissipating elements.

These dumpers are called “tuned” because they have been designed keeping in mind the natural oscillation frequencies of the structure they have to protect. The two main parameters are the spring constant and the damping ratio: by varying them it is possible to damp harmonic vibrations.

I do not know if tuned mass dampers that can work with the first fundamental frequency of  industrial size wind turbines (below 1 Hz) are currently available – however I have found quite a lot of  studies on the topic.

A similar technological solution is the tuned liquid column damper. In this case a liquid inside an U shaped tank. By varying the geometry of the tank and the depth of the liquid different damping frequencies can be achieved.

The main benefits of this solution are the geometrical flexibility (you have to put the dumper somewhere inside the tower or the nacelle – I can assure you that the space there is very reduces) and low cost.

Another variant is the pendulum damper. In this solution, the length of the pendulum is calculated to match the fundamental frequency of the WTG.

Mass Damper (a) and Pendulum Damper (b)
Copyright O. Altay, C. Butenweg, S. Klinkel, F. Taddei
Vibration Mitigation of Wind Turbine Towers by Tuned Liquid Column Dampers
Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014

Where have all the wind turbine gone? Foldable towers

Perima foldable wind turbine tower - folded. Copyright Pantano et al., Springer

In previous post some years ago I have described two alternative solution for the wind turbine tower that should help solving the problem of the huge cranes that are currently needed for the erection of the wind turbines components.

One is the self-lifting precast tower developed by Esteyco, a Spanish engineering company that developed several interesting technical solution.

The other is the Nabrawind solution – again, a Spanish company that developed a self-erecting tower. They also have another interesting product, modular blades that can be assembled.

Some days ago, I have discovered another technical solution that share some similarities with these two concept but with an interesting twist: a group of Italian engineers has developed a “retractable” tower, basically a telescopic mechanism that can be folded bringing the blades down to the ground without using cranes or other equipment.

Theoretically it could be operated from a remote location, even if I guess that some kind of supervision during the operation is advisable.

Why should you want to make your wind turbine disappear?

The authors mention several reasons, for instance minimization of the visual impact (you can make your WTG almost invisible during the day and having it work at night).

I can also think at other uses – minimization of bird impact (folding the tower during the migration period) or increased safety during extreme wind (for instance during the monsoon season in south east Asia).

The idea is not only a concept –a working prototype has already been built in southern Italy.

Perima foldable wind turbine tower - erected. Copyright Pantano et al., Springer

It is a small wind turbine (55 kW), at least for what is today the standard in utility scale projects (3 to 5 MW). Additionally it has only 2 blades, which I think can help when you retract the tower.

However the hub height is 30 meters, quite a reasonable figure.

It is interesting to observe that this technical solution needs a deep foundation, basically with a depth equivalent to the hub height.

It is mentioned the possibility to modify the concept to use the foundation hole as a well to extract water. Quite an interesting side benefit I would say.

The authors are not sharing the cost of the tower and the ancillary elements, although I suspect they could be several time the cost of the standard, non-retractile  tubular steel tower.

Finally, it would be interesting to know the applicability of this solution to WTGs in the MW class.

The authors mention a dimensioning bending moment of around 300 kNm. Such value is two orders of magnitude lower of the values that are common in industrial size turbines, so it is not immediately evident that the idea can be scaled without major modification.

An additional problem would be the length of the foundation pit.  Reaching depths of 50 meters and below, although not impossible, introduce new issues – for instance the need of very specialized drilling equipment.

Perima foldable wind turbine tower - technical details. Copyright Pantano et al., Springer

Good vibrations: wind turbines oscillations

Have you ever wondered why sometimes the wind turbines (and other similar tall structure) sometime vibrate?

Under some conditions the wind blowing on the tower create vortices.

These vortices appears regularly on both sides of the tower, creating low pressure zones first on one side and then in the other.

This beautiful sequence of vortices is called von Karman vortex street. von Karman has been a pioneer of aeronautics

For these reason the tower will start moving perpendicularly to the wind, first toward one side and after toward the opposite.

The tower has a very low structural damping – when the oscillation start its reduction is very slow because the steel tower has a limited capacity to absorb the kinetic energy.

It also has a very low natural frequency (the frequency at which the tower will tend to vibrate when subjected to external forces).

The vortices created by the wind will appear at a frequency that depends on the speed of the wind and the diameter of the tower.

The formula to calculate this frequency is very simple:

f = St · U / D

where

f is the vortex shedding frequency

St is a value called Strouhal number (in our case it is around 0,2)

U is the wind speed

D is the diameter of the tower

At a certain wind speed the vortices will appear and shed at a frequency equal to the natural frequency and the tower will resonate. The wind speed that start the resonance is called the critical speed.

If the wind blow at the critical speed for enough time the amplitude of the vibration will increase and you will see the tower oscillating.

This is a simplistic summary of a very complex phenomenon. It is however a limiting factor for the use of higher steel tower. In additional to the risk of catastrophic failure the wind induce vibrations will also generate additional fatigue loads, shortening the life of the tower.

It is also interesting to observe that a structure has more than a natural frequency.

Vibrations in the lowest natural frequency (first mode) will have this shape:

First wind turbine tower vibration mode

However, sometime a turbine can vibrate in what is called “the second mode” the second lowest natural frequency):

Second wind turbine tower vibration mode

Following this link you can see a real world example of how is a tower vibrating in the second mode.

What can we do to avoid these dangerous vibrations?

Some solutions are structural - basically aimed at increasing the damping of the tower or changing the way the mass is distributed.

It is not easy to change the mass distribution in a wind turbine tower (basically its an inverted pendulum).

Nevertheless it is possible (and it is becoming increasingly common) to install dampers in the wind turbines, either only temporarily during the installation or as a permanent feature.

Other solutions are aerodynamic - the idea is to change the shape of the tower adding elements that disrupt (or "spoil") the vortices. Conceptually they are similar to the spoilers used in cars or planes, in the sense that they are intended to mitigate an unwanted aerodynamic effect.

A soft spot for BoP: the soft-spot foundation

The soft spot in the middle of the foundation. Credits: CTE-wind.com

The soft spot foundation is another interesting technical solution that appeared in the marked some years ago.

Basically, it is similar to a standard shallow foundation with a certain amount of a foamy, soft material just in the middle below the anchor cage. I understand that different alternative materials can be used, being a standard solution Expanded Polystyrene (EPS, the type of material used to protect big electronic items during shipping).

The result is a change in the distribution of the forces that makes the foundation behave like a circular, ring-like structure.

As a consequence there is an increase of the lever arm of the stabilizing moment, and so ultimately a smaller foundation can be built.

The benefit are the savings in concrete and steel - some percentage point, that in big farms can mean a lot of money.

I know that it seems a bit strange - and possibly even counterintuitive - that just by putting some soft material in the middle of your foundation you will achieve savings in the quantities of material needed.

Me too I was surprised when I first discovered the solution. However, it looks like it really works.

The solution has been using in dozens of project worldwide. Additionally, I have seen that it has been certified by DNV-GL.

You have to consider that to work this foundation need to transmit an increased pressure to the soil below (because due to the soft spot that does not transmit pressure there is less area left).

Therefore it is usable only in situations where the bearing capacity is good - for instance in rocky areas.

I have seen this foundation for the first time on a project developed by CTE, a French engineering company specialized in wind energy.

It also look like they have some kind of copyright on the solution (or possibly only on the name).

However, lately I have noticed that it has been offered also by other engineering firms.

RUTE precast modular wind turbine foundation

Some days ago I have been contacted by Doug Krause, founder of RUTE - a green start up proposing an interesting solution for the wind turbine foundation.

Taking inspiration from the technology used in bridge construction RUTE is proposing a system of post-tensioned beams connected to a central hub. Each beam has an anchor system connecting it to the soil, and the foundation is delivered to the wind farms in around 20 elements.

Among the benefit the fact that the system is modular, less prone to quality problems (it is manufactured in specialized plants) and, at least in principle, reusable after 20 to 30 years for a new foundation: the lifetime of the components is over 40 years.

Decommissioning is also probably easier with such structure, at least compared with a standard shallow foundation.

Installation times can be cut as well – as it is delivered hardened it is ready for installation in few days from the start of the works.

I had a look at the technical specifications and I have seen that the bottom of the excavation is at the same depth of the standard solution, so no savings here. I have also noticed that in some situation soil substitution could be needed.

I have seen in their website that there is already a full-scale prototype built, so it’s much more than a concept. It has been installed at the Palmers Creek Wind Farm (Minnesota) on a 2.5 MW GE turbine with a 90 meter hub height.

Addenda (10 June 2019): I've received an email from the founder of the company. I post it here for the benefit of all readers.

Thank you Francesco for noticing RUTE.
That's a picture of our rock anchor, bulb T girder, model TG. The one we built in Minnesota is a box girder style, BX Foundation. It behaves just like an inverted T, spread foundation.

RUTE's biggest value to the BOP contractor is time. So most of the foundation works can happen off the project books and schedule. So a project can close finance and be erecting towers the same month. We'll hope to prove that claim this year.

Apart from the main BOP driver, the facility owner can run a pro forma out 30 years, or 40 years, the normal term of the land lease. And in those cases a foundation with bridge design, like ours, lasts well past 40 years. That's just a function of the post-tensioning which keeps the concrete in permanent compression. So there's an order of magnitude less fatigue damage than conventional reinforced concrete.

I can share some pictures from inside the foundation. You can walk around inside it and inspect.

Best Regards,
Doug, RUTE

Wood towers for wind turbines

I always believed that wood towers for wind turbines were a solution possible only in small, domestic WTGs (somewhere around 10 kW to maybe maximum 100 kW). There are several example available, for instance this product of InnoVentum.

Well, I was wrong: I see that some years ago (2012) a Vensys 77 1,5 MW turbine has been installed on a 100 meters tower. That is quite a number: a 77 meters rotor is considered small for today standard, however it fully qualify as a “utility scale” solution.

This full scale prototype followed a 25 meters test tower built by the same companies some years before.

Developed by 2 German companies (TimberTower & TiComTec) it has been built near Hannover. The foundation is standard (concrete) and the connection between the tower and the foundation is made trough 4 meters long steel rods.

With a somehow unusual octagonal cross section the tower diameter is comparable to a standard concrete or steel solution. I see however that other geometries are possible (hexagonal or dodecagonal).

The life span of this solution looks similar to the steel alternative (20 years). Unfortunately I haven’t been able to find information regarding the cost. For the sake of clarity it is not 100% wood – few steel elements are used inside the tower.