A mind map for BoP

Yesterday while I was traveling to meet my family in Italy I started thinking at how a mind map for the BoP would look like. Luckily the train had a free internet connection and I have found a bunch of website helping you to create a mind map online (for this particular exercise I have used Mindmup).

I was able to draw only the first nodes because I was travelling with the kids and they were unstoppable (and overwhelming noisy). I will try to expand it during the next weeks.

If you want to see the BoP mind map bigger click here.

Vortex bladeless wind turbines

I have always seen the wind induced vortexes as a problem – they create vibrations in the tower, that in some cases can start to resonate with the eigenfrequencies (the natural frequencies of the structure) and in the most extreme cases even collapse.

The existence of such vibrations is one of the reasons why it looks like that steel towers for wind turbine have reached their maximum height. At around 100 – 120 meters they start needing dampers and other anti-vortex solutions during installation and for the operational life.

What I was not aware of is that there is a Spanish start-up trying to develop a “bladeless turbine” which exploits this phenomenon to produce electricity.

I have some doubts on the idea of a “bladeless turbine” (I suspect that a wind turbine has, by definition, a rotating part). However the concept developed by the folks at Vortex is for sure very interesting.

The Vortex Tacoma (this is the name of the industrial version under development) is expected to have a height around 3 meters, a weight around 15 Kg and a rated power output of about100w.

Currently smaller scale prototypes are available and the target date for launch of the full scale production is end of 2020.

It looks like a big cylinder oscillating when the wind blow. I also see that they selected the same combination of materials as wind turbines blades (resins reinforced with carbon fiber and/or glass fiber), while for the bottom section anchored to the ground they have selected a carbon fiber reinforced polymer due to its resistance of cyclical loads.

If you wonder how does it generate energy it is with an alternator system with coils and magnets. The cool part is that, unlike wind turbines, you do not have gearboxes, shafts or any other rotating element. The benefit is not only less maintenance but also a noiseless operation.

An additional interesting characteristic of this technology is that many machines can be clustered together in a narrow space. Standard wind turbines have a distance of hundreds of meters from each other to avoid the wake effect (basically the turbulence in the wind caused by the turbine itself). The wake effect can have an impact not only in the energy production of the turbine but also on its lifespan, shortening it due to the demanding operational conditions.

On the other hand the bladeless solution thrive on turbulence so you can pack more Tacoma Vortex together in what would probably look like a forest of artificial trees.

Another very cool feature of this machine is its ability to change its rigidity to adapt it to the characteristics of the wind. Different environmental conditions will request a different setup from the vortex in terms of mass distribution and rigidity. According to the website of the developer the machine will be able to automatically “tune itself” in order to maximize the oscillations.

How many of us are there? Wind energy sector employees

Workers in Renewable Energy. Copyright Statista (one of my favorite website)

It is no secret that the wind business is going through a turbulent period, with several players in the sectors experiencing a tough time.

I was wondering how many people are currently employed in Wind and I have found this interesting report from IRENA (the International Renewable Energy Agency).

I have discovered several interesting things:

  • Only 11 million people are working in renewable energy job. Not that many, if you consider that we are 7.700.000.000.
  • Out of these 11 million, only 1.1 million people work in wind. The biggest share is Solar PV, with over 3.5 milions.
  • The majority of wind job are in China. With an incredible 44% of jobs in the People's Republic of China it looks like I will have to improve my Mandarin.
  • One out of three is a woman, above all (45%) in administrative jobs but also (around 30%) in technical function. This is more of what I thought.

 

Wind turbine tower as a water battery: the Gaildorf Wind-Water Project

Did you ever think at the amount of empty, unused space in the bottom of a wind turbine? Any idea how to use it?

Well, the folks at Max Bögl (a German conglomerate active in several sectors) have decided that it could be a good idea to fill it with water (about 40.000 m3 per turbine, up to a height of 40 meters) and use it as a temporary energy storage, in what they call a “water battery”.

Basically, the idea is to use a pumping system to fill the bottom of the tower when energy consumption is low and production is high (for instance, during a windy night).

When needed, the water can be released opening a valve and, thanks to a network of pipes with a diameter of over 1 meter, it can be used to produce energy through three Francis turbine, with a total nominal power of around 16 MW.

The hydro electrical plant is relatively near, at a distance of around 3 Km and with a height difference of 200 meters.

The turbines installed are 4× 3,4 MW GE 137 on an hybrid Max Bögl tower. What is remarkable is the hub height, varying from 155 to a record 178 m. They claim this to be the highest onshore turbine tower currently in operation, and as far as I know with a tip height of 246.5 metres, this could easily be true.

The switching time between energy storage and energy production is not exceptionally fast (30 seconds) but is not outrageously long either.

Partially founded by the German Environmental ministry with over 7 mln. € the pilot project is currently being built in Gaildorf (southern Germany).

Among the benefits of this solution is noteworthy the high efficiency of conversion of the potential energy of the water into electricity using well-known, proven technologies.

The main issue that I see is that this system, to be implemented, need a hydro electrical plant nearby with his own “long term water storage basin”. Essentially the wind turbines are providing only an additional (and somehow limited) storage capacity. However, in order to be cost effective, this technology will also need a “standard” basin.