Blade lifter: from dream to reality

This post is a follow up of my other post on the blade lifter.

When I’ve been discussing about this solution with the other guy in the business 3 or 4 years ago, they told me it was something utopic, a “nice to have, but still a dream”.

Well, apparently now the blade lifter arrived, and it’s here to stay - and with a more aggressive configuration.

We’ve used it in a project in central America together with GES, a company specialized in wind and solar project, who bought one.

I’ve also discovered that another transport company in Italy (SIA – they are specialized in WTGs components transport) bought one in August 2014.

Clearly, this unlock the power of the blade lifter in Europe: I’m sure that in some complicated situations, it will make sense to move it from a country to the other.

There is a very good post on the company web describing this solution – have a look.

They’ve also done a very professional video (embedded in this post).

Resuming the key features:

 

  • Produced by Scheuerle
  • Maximum angle 60°
  • Maximum capacity is 25 tons
  • Maximum slope: 23% (paved road) / 18% (dirt road)
  • Wireless wheel remote control

 

Enjoy the video!

The five most abusive prices I’ve seen in the last years

Having the opportunity of working at several project worldwide I already discovered that the idea of what is “cheap” or “expensive” may vary a lot depending on the country.

Also, huge countries like Brazil or Chile may show a relevant price dispersion depending on the area (Patagonia or Atacama desert?).

A third consideration is that, due to inflation, market situation, other project being constructed at the same time, etc. the prices may move a lot (downwards, but normally upwards) from one year to the following.

However, here you have my favorite top 5 of the most expensive price I’ve ever seen. They are totally crazy, even with all the above considerations.

 

Concrete: Mozambique (900€/m3)

Steel: Morocco (15€/Kg)

Embankment: Mexico (241€/m3)

Crushed stones base layer: Mozambique (450€/m3)

Overheads: Chile (50% of the project cost)

 

On the cheap side I'd like to mention Portugal: a country with a lot of skilled civil works companies, used to the renewable business - and with great food as well! 😉

Pareto principle in wind farm civil works price

Among the numerous fenomenous that follow a Pareto distribution (i.e., 80% of the effects come from 20% of the causes) there is the price of civil works in wind farms.

Through the years we’ve developed a really completed, exhaustive documentation for tenders. Our beautiful Bill of Quantities includes hundreds of items.

However, how many of them have a real impact on price?

Well, just 5.

Basically, around 70%-80% of the total price is driven by the following items:

  • Concrete
  • Steel
  • Cut
  • Fill
  • Crushed stones for base layer

I’m not saying that it would be a good idea to ask only these 5 prices to the subcontractors.

There are many reasons to produce a complete and accurate Bill of Quantities – for instance, to be sure that you are on the same page with the subcontractor.

Being a niche sector, often smaller local companies have an idea somehow distorted of what is included in a wind farm.

They might ignore the existence of something (“You need 50.000 kg of grout? For what?”) or overprice one or more items (20.000€ to assembly an anchor cage is a good example).

However, at the end of the day what will move the total price will be the 5 items listed above.

Concrete is usually the heaviest item. I’m including in it all types of concrete that might be found in a wind farm (lean concrete, foundation concrete, concrete used in roads, etc.).

Although obviously the numbers will vary depending on the project (a mountainous area with a lot of rock will have expensive earthworks, while a project with dozen of piled foundations will rise steeply steel and concrete price) I’ve seen that they can be used as a rule of thumb and are a useful guideline when I skim through the offers.

As I don’t know if it’s better to present a graphical example with a pie chart or bar diagram (and I enjoy playing with Excel) I attach both.

It’s a 50 MW wind farm quoted by a subcontractor who charges a lot Overhead Costs (which is perfectly fine for me: I don’t want to have them “scattered” where they don’t belong).

71% of the total comes from the 5 key cost drivers.